Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.570
Filtrar
1.
PLoS One ; 19(4): e0302008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603768

RESUMO

Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Humanos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Membro Anterior , Músculo Esquelético , Modelos Animais de Doenças
2.
Curr Biol ; 34(8): 1718-1730.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38582078

RESUMO

Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.


Assuntos
Córtex Somatossensorial , Animais , Camundongos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Membro Anterior/fisiologia , Percepção do Tato/fisiologia , Masculino , Estimulação Física
3.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619242

RESUMO

Powerful genetic and molecular tools available in mouse systems neuroscience research have enabled researchers to interrogate motor system function with unprecedented precision in head-fixed mice performing a variety of tasks. The small size of the mouse makes the measurement of motor output difficult, as the traditional method of electromyographic (EMG) recording of muscle activity was designed for larger animals like cats and primates. Pending commercially available EMG electrodes for mice, the current gold-standard method for recording muscle activity in mice is to make electrode sets in-house. This article describes a refinement of established procedures for hand fabrication of an electrode set, implantation of electrodes in the same surgery as headplate implantation, fixation of a connector on the headplate, and post-operative recovery care. Following recovery, millisecond-resolution EMG recordings can be obtained during head-fixed behavior for several weeks without noticeable changes in signal quality. These recordings enable precise measurement of forelimb muscle activity alongside in vivo neural recording and/or perturbation to probe mechanisms of motor control in mice.


Assuntos
Mãos , Extremidade Superior , Animais , Camundongos , Eletrodos , Membro Anterior , Músculos
4.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557586

RESUMO

Behavioral testing in rat models is frequently utilized for diverse purposes, including psychological, biomedical, and behavioral research. Many traditional approaches involve individual, one-on-one testing sessions between a single researcher and each animal in an experiment. This setup can be very time consuming for the researcher, and their presence may impact the behavioral data in unwanted ways. Additionally, traditional caging for rat research imposes a lack of enrichment, exercise, and socialization that would normally be typical for the species, and this context may also skew the results of behavioral data. Overcoming these limitations may be worthwhile for several research applications, including the study of acquired brain injury. Here, an example method is presented for automatically training and testing individual rat behavior in a colony cage without the presence of humans. Radio frequency identification can be utilized to tailor sessions to the individual rat. The validation of this system occurred in the example context of measuring skilled forelimb motor performance before and after stroke. Traditional characteristics of post-stroke behavioral impairments and novel measures enabled by the system are measured, including success rate, various aspects of pull force, bout analysis, initiation rate and patterns, session duration, and circadian patterns. These variables can be collected automatically with few limitations; though the apparatus removes experimental control of exposure, timing and practice, the validation produced reasonable consistency in these variables from animal to animal.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Membro Anterior , Extremidade Superior , Modelos Animais de Doenças
5.
Anat Histol Embryol ; 53(3): e13040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623947

RESUMO

The study aims to analyse the normal anatomical and radiographical features of the Manus of the southern Aswanian-adapted Arabian one-humped camel, providing crucial data for diagnosing and treating various ailments. Our study was applied to 10 cadaver forelimbs of adult male one-humped camels (4-5 years old) for an explanation of the gross anatomy of the bones of the Manus region from under the carpal bones by using traditional techniques, including the gross anatomical, radiographic and x-ray (at the dorsopalmar and lateral planes) of the preparation of Manus bones. Our results showed that the large fused (third and fourth) metacarpal bones, in which the fusion extended along the entire length of the bone except at the distal end, diverged to form separate articulations with cross-ponding digits. As described in all ruminant species, especially the camel, there were two digits, and each digit consisted of three phalanges and two proximal sesamoid bones. Our radiographic x-ray data revealed that the complete radiopaque septum that completely divided the medullary cavity into two separate parts was clear from the dorsopalmar view, while the lateral view showed the proximal sesamoid bones that were placed over each other and located palmar to the head of the large metacarpal bone. In conclusion, our study reveals the adaptations of the Arabian one-humped camel to Egyptian conditions, aiding in the early diagnosis of lameness and digit problems and enabling veterinarians and camel owners to better address these issues, thereby improving the overall health and well-being of these animals.


Assuntos
Camelus , Ossos Metacarpais , Masculino , Animais , Camelus/anatomia & histologia , , Membro Anterior , Radiografia , Ossos Metacarpais/diagnóstico por imagem
6.
J Morphol ; 285(4): e21690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538209

RESUMO

The early period of ontogeny is key to understanding the patterns of body plan formation in birds. Most studies of avian development have focused on the development of individual avian characters, leaving their developmental integration understudied. We explored the dynamics and integration of relative percentage increments in body mass, lengths of head, skeletal elements of wing and leg, and primary flight feathers in the embryonic and postnatal development of the Rook (Corvus frugilegus). The relative percentage increments were calculated according to Brody's equation. Groups of similar growing traits (modules) were determined using hierarchical cluster analysis, and the degree of correlation between modules was estimated by PLS analysis. The embryonic and postnatal periods demonstrate significant consistency both in the dynamics of changes in relative percentage increments of studied traits as well as in the clustering of individual modules. The modules mainly include the body mass and head length, as well as the elements that form the fore- and hind limbs. Differences were revealed in the combination of modules into clusters in embryonic and postnatal periods. Hind limb elements clustered together with wing elements in the embryonic period but with body mass and the head in the postnatal period. The strongest modularity was noted for the leg in embryogenesis, and for the wing in postnatal development. The forelimb and especially the primary feathers had more distinctive growth patterns. We suggest the changes in the degree of integration between locomotor modules in ontogenesis are connected with the earlier functioning of the legs in the postnatal period and with the preparation of the wings for functioning after a chick leaves the nest.


Assuntos
Corvos , Animais , Asas de Animais , Galinhas , Membro Posterior , Membro Anterior
7.
PLoS One ; 19(3): e0299990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451976

RESUMO

OBJECTIVES: To evaluate secondary intention wound healing in the horse's limbs when treated with the synthetic epidermis spray (Novacika®, Cohesive S.A.S, France) or with a standard bandaging technique. METHODS: Six Standardbred mares were included in the study. Four 2.5 x 2.5 cm full-thickness skin wounds were created on each thoracic limb. Two wounds were located on the dorsoproximal aspect of the cannon bone and the other two at the dorsoproximal aspect of the fetlock. Six hours after creation, wounds were randomly treated with synthetic epidermis spray or standard bandaging. The wounds were assessed every 4 days by gross visual assessment and using a 3D imaging camera. Analysis was performed with a 3D imaging application. RESULTS: Out of 46 wounds, 22 showed exuberant granulation tissue and were part of the standard bandaging group. Whether the wounds were treated with synthetic epidermis spray or standard bandaging, the time for healing was the same. CONCLUSION: The synthetic epidermis spray studied in this model has allowed healing without the production of exuberant granulation tissue but did not reduce the median wound healing time compared to a standard bandaging technique. The synthetic epidermis spray is potentially an interesting alternative for the management of secondary intention wound healing of superficial and non-infected distal limb wounds in adult horses on economical and practical aspects. However, all statistical inference (p-values especially) must be interpreted with caution, given the size of the sample.


Assuntos
Intenção , Dermatopatias , Animais , Feminino , Epiderme , Membro Anterior , Cavalos , Cicatrização
8.
PeerJ ; 12: e16960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436017

RESUMO

Important transformations of the pectoral girdle are related to the appearance of flight capabilities in the Dinosauria. Previous studies on this topic focused mainly on paravians yet recent data suggests flight evolved in dinosaurs several times, including at least once among non-avialan paravians. Thus, to fully explore the evolution of flight-related avian shoulder girdle characteristics, it is necessary to compare morphology more broadly. Here, we present information from pennaraptoran specimens preserving pectoral girdle elements, including all purportedly volant taxa, and extensively compare aspects of the shoulder joint. The results show that many pectoral girdle modifications appear during the evolution from basal pennaraptorans to paravians, including changes in the orientation of the coracoid body and the location of the articulation between the furcula and scapula. These modifications suggest a change in forelimb range of motion preceded the origin of flight in paravians. During the evolution of early avialans, additional flight adaptive transformations occur, such as the separation of the scapula and coracoid and reduction of the articular surface between these two bones, reduction in the angle between these two elements, and elongation of the coracoid. The diversity of coracoid morphologies and types of articulations joining the scapula-coracoid suggest that each early avialan lineage evolved these features in parallel as they independently evolved more refined flight capabilities. In early ornithothoracines, the orientation of the glenoid fossa and location of the acrocoracoid approaches the condition in extant birds, suggesting a greater range of motion in the flight stroke, which may represent the acquisition of improved powered flight capabilities, such as ground take-off. The formation of a new articulation between the coracoid and furcula in the Ornithuromorpha is the last step in the formation of an osseous triosseal canal, which may indicate the complete acquisition of the modern flight apparatus. These morphological transitions equipped birds with a greater range of motion, increased and more efficient muscular output and while at the same time transmitting the increased pressure being generated by ever more powerful flapping movements in such a way as to protect the organs. The driving factors and functional adaptations of many of these transitional morphologies are as yet unclear although ontogenetic transitions in forelimb function observed in extant birds provide an excellent framework through which we can explore the behavior of Mesozoic pennaraptorans.


Assuntos
Dinossauros , Articulação do Ombro , Animais , Extremidade Superior , Membro Anterior , Aves , Escápula
9.
Neurorehabil Neural Repair ; 38(3): 187-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425047

RESUMO

BACKGROUND: Caloric restriction promotes neuroplasticity and recovery after neurological injury. In mice, we tested the hypothesis that caloric restriction can act post-stroke to enhance training-associated motor recovery. METHODS: Mice were trained to perform a skilled prehension task. We then induced a photothrombotic stroke in the caudal forelimb area, after which we retrained animals on the prehension task following an 8-day delay. Mice underwent either ad libitum feeding or alternate day fasting beginning 1-day after stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. RESULTS: Prior studies have shown that post-stroke recovery of prehension can occur if animals receive rehabilitative training during an early sensitive period but is incomplete if rehabilitative training is delayed. In contrast, we show complete recovery of prehension, despite a delay in rehabilitative training, when mice underwent alternate day fasting beginning 1-day post-stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. Recovery was independent of weight loss. Stroke volumes were similar across groups. CONCLUSIONS: Post-stroke caloric restriction led to recovery of motor function independent of a protective effect on stroke volume. Prehension recovery improved even after ad libitum feeding was reinstituted suggesting that the observed motor recovery was not merely a motivational response. These data add to the growing evidence that post-stroke caloric restriction can enhance recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Membro Anterior , Extremidade Superior , Recuperação de Função Fisiológica/fisiologia , Jejum , Modelos Animais de Doenças
11.
Physiol Rep ; 12(3): e15941, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38325910

RESUMO

The present study was designed to examine the effect of trans-spinal magnetic stimulation on bilateral respiratory and forelimb muscles in healthy subjects. Two wings of a figure-of-eight magnetic coil were placed on the dorsal vertebrae, from the fifth cervical to the second thoracic dorsal vertebra with a center at the seventh cervical vertebra. The surface electromyograms of bilateral diaphragm and biceps were recorded in response to trans-spinal magnetic stimulation with 20%-100% maximum output of the stimulatory device in male (n = 12) and female participants (n = 8). Trans-spinal magnetic stimulation can induce a co-activation of bilateral diaphragm and biceps when the stimulation intensity is above 60%. The onset latency was comparable between the left and right sides of the muscles, suggesting bilateral muscles could be simultaneously activated by trans-spinal magnetic stimulation. In addition, the intensity-response curve of the biceps was shifted upward compared with that of the diaphragm in males, indicating that the responsiveness of the biceps was greater than that of the diaphragm. This study demonstrated the feasibility of utilizing trans-spinal magnetic stimulation to co-activate the bilateral diaphragm and biceps. We proposed that this stimulatory configuration can be an efficient approach to activate both respiratory and forelimb muscles.


Assuntos
Diafragma , Membro Anterior , Humanos , Animais , Masculino , Feminino , Diafragma/fisiologia , Voluntários Saudáveis , Eletromiografia , Vértebras Torácicas , Fenômenos Magnéticos , Estimulação Elétrica
12.
Microsurgery ; 44(2): e31136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342995

RESUMO

INTRODUCTION: Above elbow transplants represent 19% of the upper extremity transplants. Previous large-animal models have been too distal or heterotopic, did not use immunosuppression and had short survival. We hypothesize that an orthotopic forelimb transplant model, under standard immunosuppression, is feasible and can be used to address questions on peri-transplant ischemia reperfusion injury, and post-transplantation vascular, immunologic, infectious, and functional outcomes. MATERIALS AND METHODS: Four forelimbs were used for anatomical studies. Four mock transplants were performed to establish technique/level of muscle/tendon repairs. Four donor and four recipient female Yucatan minipigs were utilized for in-vivo transplants (endpoint 90-days). Forelimbs were amputated at the midarm and preserved through ex vivo normothermic perfusion (EVNP) utilizing an RBC-based perfusate. Hourly perfusate fluid-dynamics, gases, electrolytes were recorded. Contractility during EVNLP was graded hourly using the Medical Research Council scale. EVNP termination criteria included systolic arterial pressure ≥115 mmHg, compartment pressure ≥30 mmHg (at EVNP endpoint), oxygen saturation reduction of 20%, and weight change ≥2%. Indocyanine green (ICG) angiography was performed after revascularization. Limb rejection was evaluated clinically (rash, edema, temperature), and histologically (BANFF classification) collecting per cause and protocol biopsies (POD 1, 7, 30, 60 and endpoint). Systemic infections were assessed by blood culture and tissue histology. CT scan was used to confirm bone bridging at endpoint. RESULTS: Animals 2, 4 reached endpoint with grade 0-I rejection. Limbs 1, 3 presented grade III rejection on days 6, 61. CsA troughs averaged 461 ± 189 ng/mL. EVNLP averaged 4.3 ± 0.52 h. Perfusate lactate, PO2 , and pH were 5.6 ± 0.9 mmol/L, 557 ± 72 mmHg and 7.5 ± 0.1, respectively. Muscle contractions were 4 [1] during EVNLP. Transplants 2, 3, 4 showed bone bridging on CT. CONCLUSION: We present preliminary evidence supporting the feasibility of an orthotopic, mid-humeral forelimb allotransplantation model under standard immunosuppression regimen. Further research should validate the immunological, infectious, and functional outcomes of this model.


Assuntos
Membro Anterior , Extremidade Superior , Suínos , Animais , Feminino , Porco Miniatura , Membro Anterior/cirurgia , Membro Anterior/irrigação sanguínea , Modelos Animais , Contração Muscular
13.
J Vet Med Sci ; 86(4): 421-427, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38403663

RESUMO

This study investigated age-related radiographic changes in the distal parts of the forelimbs by radiographic evaluation and identified the radiographic changes associated with diseases specific to foals. The hoof angle (HA), distal phalanx angle (P3A), distal phalanx palmer angle (P3PA), distal interphalangeal joint angle (DIPJA), and metacarpophalangeal joint angle (MPJA) on lateromedial radiographs of forelimbs were measured on the day after birth (Day 1); at 1, 2, 4, 6, and 8 weeks of age; and then at monthly intervals until 12 months of age. HA and P3A significantly increased from 1 day to 4 weeks and 4 weeks to 3 months of age. The P3PA increased dramatically from 1 day to 1 week, 1 week to 2 weeks, and 2 weeks to 8 weeks of age, and then decreased after 3 months of age. DIPJA significantly decreased from 1 day to 2 weeks of age before increasing from 3 to 5 months of age. MPJA increased with age until 4 weeks, slightly decreased from 2 to 4 months of age, and then gradually decreased from 4 to 6 months of age. The findings indicate that foals' forelimbs typically show flexion of the fetlock and a broken backward hoof-pastern axis just after birth, an upright fetlock until 4 months of age, and a change to a mature conformation after 6 months of age. Physiological variants were correlated with the occurrence of common foal diseases during the radiographic evaluation periods.


Assuntos
Casco e Garras , Cavalos , Animais , Casco e Garras/diagnóstico por imagem , Membro Anterior/diagnóstico por imagem , Radiografia , Extremidades , Osso e Ossos
14.
Cell Rep ; 43(2): 113804, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38368612

RESUMO

Neural mechanisms underlying amputation-related secondary pain are unclear. Using in vivo two-photon imaging, three-dimensional reconstruction, and fiber photometry recording, we show that a microglial activation cascade from the primary somatosensory cortex of forelimb (S1FL) to the primary somatosensory cortex of hindlimb (S1HL) mediates the disinhibition and subsequent hyperexcitation of glutamatergic neurons in the S1HL (S1HLGlu), which then drives secondary mechanical hypersensitivity development in ipsilateral hindpaws of mice with forepaw amputation. Forepaw amputation induces rapid S1FL microglial activation that further activates S1HL microglia via the CCL2-CCR2 signaling pathway. Increased engulfment of GABAergic presynapses by activated microglia stimulates S1HLGlu neuronal activity, ultimately leading to secondary mechanical hypersensitivity of hindpaws. It is widely believed direct neuronal projection drives interactions between distinct brain regions to prime specific behaviors. Our study reveals microglial interactions spanning different subregions of the somatosensory cortex to drive a maladaptive neuronal response underlying secondary mechanical hypersensitivity at non-injured sites.


Assuntos
Hipersensibilidade , Microglia , Animais , Camundongos , Amputação Cirúrgica , , Membro Anterior , Mãos
15.
Ann Biomed Eng ; 52(4): 982-996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246964

RESUMO

The purpose was to assess the effectiveness of three sliding tactile probes placed on the forelimb skin to provide proprioceptive feedback for the detection of hand gestures and discrimination of object size. Tactile contactors representing the first three fingers were driven along the proximodistal axis by linear servo motors. Twenty healthy subjects were involved in the gesture detection test, with 10 of them also participating in the object-size discrimination task. Motors were controlled by computer in the first four sessions of the gesture detection experiment, while the fifth session utilized a sensorized glove. Both the volar and dorsal sides of the forearm were examined. In the object-size discrimination experiment, the method was exclusively assessed on the volar surface under four distinct feedback conditions, including all fingers and each finger separately. The psychophysical data were further analyzed using a structural equation model (SEM) to evaluate the specific contributions of each individual contactor. Subjects consistently outperformed the chance level in detecting gestures. Performance improved up to the third session, with better results obtained on the volar side. The performances were similar in the fourth and fifth sessions. The just noticeable difference for achieving a 75% discrimination accuracy was found to be 2.90 mm of movement on the skin. SEM analysis indicated that the contactor for the index finger had the lowest importance in gesture detection, while it played a more significant role in object-size discrimination. However, all fingers were found to be significant predictors of subjects' responses in both experiments, except for the thumb, which was deemed insignificant in object-size discrimination. The study highlights the importance of considering the partial contribution of each degree of freedom in a sensory feedback system, especially concerning the task, when designing such systems.


Assuntos
Retroalimentação Sensorial , Gestos , Humanos , Animais , Retroalimentação Sensorial/fisiologia , Pele , Tato/fisiologia , Dedos/fisiologia , Membro Anterior
16.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38265300

RESUMO

The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.


Assuntos
Córtex Motor , Ratos , Masculino , Animais , Vias Neurais/fisiologia , Ratos Long-Evans , Córtex Motor/fisiologia , Membro Anterior/fisiologia , Primatas , Mapeamento Encefálico
17.
J Zoo Wildl Med ; 54(4): 659-669, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38251989

RESUMO

The giant anteater (Myrmecophaga tridactyla) is a neotropical mammal considered to be vulnerable to extinction. Recent increased interest in veterinary care in the giant anteater has prompted renewed interest in anatomical descriptions in this species. The terrestrial habits and slow movements of the giant anteater contribute to its susceptibility to vehicular trauma on highways, which is a significant cause of mortality in the species. This study describes the muscular anatomy of the thoracic limb and variations of the long bones with emphasis on the structures surrounding the humerus and radius. It also describes the possible surgical approaches for the management of fractures of humerus and radius, comparing these with the surgical approaches described in dogs (Canis lupus familiaris). Three giant anteater and three domestic dog cadavers, from deaths not related to this project, were used. The medial approach to the humeral diaphysis of the giant anteater resulted in the least tissue trauma, and provided access to the flattest surface for implant attachment. The lateral approach to the radius proved challenging, requiring total detachment of the extensor carpi radialis muscle and incision of the very robust abductor digitorum longus muscle to access the distal diaphysis. Although the giant anteater shares many similarities of the thoracic limb anatomy with the domestic dog, important differences exist. This comparative knowledge will allow veterinary practitioners to directly apply the principles of fracture repair in these species. Safe access to these bones for possible osteosynthesis is essential to allow implant placement and minimize postoperative complications in this species.


Assuntos
Fraturas Ósseas , Rádio (Anatomia) , Animais , Vermilingua , Úmero/cirurgia , Membro Anterior/cirurgia , Cadáver , Fraturas Ósseas/cirurgia , Fraturas Ósseas/veterinária
18.
Am J Vet Res ; 85(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171091

RESUMO

OBJECTIVE: To determine the dose effect of peri-neural liposomal bupivacaine (LB) in an induced forelimb lameness model. ANIMALS: 12 clinically normal adult horses. METHODS: A randomized cross-over design was performed with 1 limb receiving saline and the other LB: low dose (6), high dose (6). Lameness was induced in 1 forelimb using a frog-pressure model. In the lame limb, peri-neural injection of the palmar nerves at the proximal sesamoid bones was performed using saline, low dose LB (0.25 mg/kg) (LDLB), or high dose LB (0.5mg/kg) (HDLB) in random order with a 1-week washout period between treatments. Distal limb swelling, mechanical nociceptive thresholds (MNT), and objective lameness data were collected before and up to 72 hours after peri-neural anesthesia. Data analysis was performed with mixed model ANOVA, equality of medians test, and Kaplan Meier survival analysis. RESULTS: Compared with baseline, horses treated with LDLB and HDLB had improvements in MNT and lameness (P < .001). In the LDLB group, the median duration of analgesia was 4.5 hours (range = 3-6 hours) and the median return to lameness was 7 hours (range = 4-24 hours). In the HDLB group, the median duration of analgesia was 12 hours (range = 4-48 hours) and the median return to lameness was 9 hours (range = 3-48 hours). Mild to moderate swelling was identified in 11/12 (92%) LB limbs. CLINICAL RELEVANCE: Both LDLB and HDLB resulted in loss of skin sensation and improvement of lameness. There was high variability among horses in duration of action for both doses.


Assuntos
Doenças dos Cavalos , Coxeadura Animal , Animais , Analgésicos , Anestésicos Locais/uso terapêutico , Bupivacaína/farmacologia , Bupivacaína/uso terapêutico , Membro Anterior , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Coxeadura Animal/tratamento farmacológico , Dor/tratamento farmacológico , Dor/veterinária , Estudos Cross-Over
19.
Nat Commun ; 15(1): 376, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191461

RESUMO

Extant cicada (Hemiptera: Cicadoidea) includes widely distributed Cicadidae and relictual Tettigarctidae, with fossils ascribed to these two groups based on several distinct, minimally varying morphological differences that define their extant counterparts. However, directly assigning Mesozoic fossils to modern taxa may overlook the role of unique and transitional features provided by fossils in tracking their early evolutionary paths. Here, based on adult and nymphal fossils from mid-Cretaceous Kachin amber of Myanmar, we explore the phylogenetic relationships and morphological disparities of fossil and extant cicadoids. Our results suggest that Cicadidae and Tettigarctidae might have diverged at or by the Middle Jurassic, with morphological evolution possibly shaped by host plant changes. The discovery of tymbal structures and anatomical analysis of adult fossils indicate that mid-Cretaceous cicadas were silent as modern Tettigarctidae or could have produced faint tymbal-related sounds. The discovery of final-instar nymphal and exuviae cicadoid fossils with fossorial forelegs and piercing-sucking mouthparts indicates that they had most likely adopted a subterranean lifestyle by the mid-Cretaceous, occupying the ecological niche of underground feeding on root. Our study traces the morphological, behavioral, and ecological evolution of Cicadoidea from the Mesozoic, emphasizing their adaptive traits and interactions with their living environments.


Assuntos
Hemípteros , Animais , Filogenia , Âmbar , Ecossistema , Membro Anterior , Ninfa
20.
Sci Rep ; 14(1): 549, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272887

RESUMO

Numerous non-avian dinosaurs possessed pennaceous feathers on their forelimbs (proto-wings) and tail. Their functions remain unclear. We propose that these pennaceous feathers were used in displays to flush hiding prey through stimulation of sensory-neural escape pathways in prey, allowing the dinosaurs to pursue the flushed prey. We evaluated the escape behavior of grasshoppers to hypothetical visual flush-displays by a robotic dinosaur, and we recorded neurophysiological responses of grasshoppers' escape pathway to computer animations of the hypothetical flush-displays by dinosaurs. We show that the prey of dinosaurs would have fled more often when proto-wings were present, especially distally and with contrasting patterns, and when caudal plumage, especially of a large area, was used during the hypothetical flush-displays. The reinforcing loop between flush and pursue functions could have contributed to the evolution of larger and stiffer feathers for faster running, maneuverability, and stronger flush-displays, promoting foraging based on the flush-pursue strategy. The flush-pursue hypothesis can explain the presence and distribution of the pennaceous feathers, plumage color contrasts, as well as a number of other features observed in early pennaraptorans. This scenario highlights that sensory-neural processes underlying prey's antipredatory reactions may contribute to the origin of major evolutionary innovations in predators.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Membro Anterior/fisiologia , Estimulação Luminosa , Plumas , Evolução Biológica , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...